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1. Introduction

The Configurable, Highly Parallel (CHiP) Computers are a family of

architectures intended to exploit very large scale integration [1,2].

Because the processors, memory and switching capability compete for

the same silicon, there are significant trade-offs possible among the three

constituents: large memories imply fewer processors; more switching

capability implies smaller processor/memory structures, etc. Determin-

ing which family members provide the best mix of these three consti-

tuents can only be determined by directly evaluating the needs of the

programs written for the CHiP Computer. Software emulation is quickly

limited by the low performance that sequential machines exhibit when

they emulate multiprocessors. So, a computer to execute CHiP programs

is needed in order to design a CHiP Computer. The Pringle serves this

purpose.

The Pringle is not a CHiP Computer, but it executes CHiP programs

in a way that allows one to infer how a CHiP machine would perform.

(This permits software development and testing to proceed in parallel

with hardware design.) Moreover, the Pringle is an interesting parallel

architecture in its own right.

4.R
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We begin with a brie! review of the CHiP architecture and the design'

goals for the Pringle (Section 2) and then proceed to describe the Pringle

machine in detail (Section 3). We conclude with a comparison of the Prin-

gle and the CHiP Computer.

Z. The CHiP Computer and Pringle Design Objectives

Recall from the references (1,2] that a CHiP Computer is composed

of a collection of homogeneous processing elements (PEs) placed at regu-

lar intervals in a lattice of programmable switches. (See Figure 1:.) Each

PE is a simple microprocessor with a small amount (e.g., 2K bytes) of

local memory for program and data storage; there is no global memory.

Each switch contains a small amount (e.g., 8-16 words) of memory in

which to store switch instructions, called configuration settings. Execut-

ing a configuration setting causes a switch to connect two or more of its

incident data paths; note that this is circuit switching. Separate dataii.. paths can cross the switch simultaneously (i.e., there is crossover at a

switch). By programming the switches appropriately, the PEs can be con-

nected into topologies of arbitrary form, e.g., mesh, tree, torus. (See Fig-

ure 2.)

In addition to the switch lattice, a CHiP architecture has a control-

ling computer responsible for monitoring the computation. The comnpu-

tation is divided into phases, where each phase corresponds roughly to a

single algorithm with a single processor topology. For example, the first

phase might be a mesh connected phase, the second a tree connected

phase, etc. The controller prepares for a computation by down loading to

the PEs the code segments needed for several phases, and down loading

to the switches the configuration settings implementing the topologies of

those phases. To initiate computation, the controller broadcasts '' the
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Figure 1. Two switch lattices; squares represent PEs, circles represent
switches, lines represent data paths; PEs are actually much
larger than switches.

switches which topology is required for the first phase, causing the pro-

cessors to be connected into that structure. The PEs then begin execut-

ing their respective code segments for that phase using a common clock.

PEs simply read and write to their 1/0 parts without "knowing" the

source or target PEs of the transfer; the data paths of the configuration

form point-to-point connections. When the phase is complete, the con-

troller broadcasts a signal indicating which configuration setting is

needed for the next phase, and the PEs then begin executing their

corre~sponding code segments. Execution continues in this manner until

the computation is complete or until additional PE and switch codes have

to be down loaded.

Although the description of the CHiP machine has been brief, it

suffices to permit a discussion of the design goals of the Pringle.

First, we must amplify on a point made in the introduction: The CHIP

machine is an integrated architecture intended to exploit VLSI, so the

processors, memories, switches and data paths are all competing for the

.<A
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I m same resource, silicon. How much area is devoted to each type of corn-

ponent will be determined by how much each contributes to the over all

performance of typical algorithms. The answer will be a judgement based

on the observed usage. So the Pringle must be a "good, first approxima-

tion" with enough flexibility to extend or limit the facilities to some

degree.

A second consideration is that the Pringle must have enough proces-

sors to test adequately the flne-grain parallelism characteristic of CHiP*1 processing. Of course, no parallel processor has enough processing capa-

city to handle the largest problems of interest, so we must in any case

address the issues of contracting large problems and multiplexing the

processors. But there should be enough capacity to observe sustained

performance on nontrivial problems.

Another feature of the Pringle design is that it permit a comparison

of data driven I/O with synchronous I/0. Data driven communication is

expensive to implement because of the need for components like input

queues and "overrun" signalling mechanisms. On the other hand, syn-

chronous I/O, which requires PEs to communicate only at agreed upon

times, is difficult to program, potentially fragile, but possibly faster. It

has been shown [3] that certain data driven programs can be automati-

cally converted into equivalent, synchronously communicating programs.

It is crucial to be able to run both to determine the effect on perfor-

mance.

With these considerations in mind, the Pringle has been designed and

built. The structure is described in the next section.

L



-6--

3. Pringle Hardware Deincripton

3.1. Overall System Structure

The Pringle machine was designed with two important requirements

in mind: first, the ability to emulate a CHiP computer with reasonable

performance, and second, flexibility. Both requirements led to the

overall system structure depicted in Figure 3.

The system is divided into two distinct logical parts. The first is a

processing element array controlled by a central microprocessor. It con-:1 tains 64 PEs each of which has its own read-write random access memory

(RAM) and read only memory (EPROM). The processors of these PEs are

8-bit single-chip microcomputers coupled with arithmetic processing

units (APUs) that perform 32-bit floating point arithmetic.

The PE array is managed by a controller, an Intel 8086, that com-

municates with the PEs by means of an address-data bus, and a control

bus. To facilitate quick down loading of data and programs into PE RAMs

from the controller, the RAM of each PE is made to appear as a block of

memory in the address space of the controller's microprocessor. This

memory mapping allows the controller to examine all PE RAM and to take

snapshots of memory during the execution of a CHiP program. The con-

trol bus includes global reset and interrupt lines that permit the con-

troller to halt or pause the PEs, and status lines which allow the con-

troller to determine the busy or idle status of the PEs.

The second part of the system is the switch lattice emulator, which

we shall call the Switch. From a logical point of view, the Switch is a

crossbar that allows data transmitted by any PE to be delivered to any

other PE, according to routing information stored in a mapping table.

$
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The Switch is implemented using high-speed polling hardware.

Every PE is interfaced to the Switch with an output data latch anid an

input data queue. Assuming processing elements with eight ports as

shown in Figure 1, we can assign direction addresses 0 through 7 to the

PE 1/0 ports. When a PE wants to write to an 1/0 port in Pringle, it

latches both the data and the address of the desired direction onto its

output data latch, setting a data-present flag on the latch. The Switch

polling hardware does a cyclic scan of all the output data latches via the

Switch input bus. When it encounters a latch with the data-present flag
set, it takes the data and direction number from the latch, clears the

data present flag, then looks up in a table in high-speed RAM for the des-

tination PE and port. The polling hardware then routes the data to the

input queue of the destination PE with the destination port number

appended to the data, via the Switch output bus. The polling hardware

will run at a maximum speed of 8 MHz, allowing a complete 84 PE scan to

take place in 8 Ass. Although not exceptionally fast, this speed is con-

sistent with the computational rate of the PEs.

The RAM which contains the Switch mapping table is accessible to a

microprocessor which serves as the Switch controller. It can down load

switch settings into the RAM, it can halt and start the polling hardware,

and it can detect abnormal conditions in the Switch hardware such as an

input queue overflow at one of the PEs.

There is sufficient memory space in the mapping table RAM to hold

eight different configuration settings at the same time. This allows up to

eight different interconnection structures to bg down loaded into the

Switch at once. The Switch controller can select any one of the eight

configuration settings even as the polling hardware is running.



3.2. PE Structure Detail

Figure 4 presents a block diagram of the PEs implemented in the

Pringle machine. The microprocessor used is an Intel 8031, a single-chip

8-bit microcomputer. It contains 128 bytes of internal read-write

memory, two parallel I/O ports, two counter-timers, and a serial I/O port.

It runs on a 12 MHz clock which gives it a 1 jss execution time for most of

its instructions, and a maximum instruction execution tirre of 4 jts for 8-

bit multiply and divide.

External memory is composed of an industry standard 2048 by 8-bit

static RAM and a 4096 by 8-bit EPROM. A simple system of tri-state

buff rs allows the central controller to access the external RAM when it is

not being accessed by the 8031.

An Intel 8231 arithmetic processing unit (APU) chip is interfaced to

the 8031 by means of a command latch and a data latch. The 8231 con-

tains its own stack to which the 8031 can push data, and from which it

can pop data. Commands may be issued by the 8031 to the APU to make

it perform floating point arithmetic operations on the stack's contents.

As the APU executes commands, the 8031 microprocessor is free to per-

form other operations.

The 8031 has access to an eleven bit wide output data latch and an

eleven bit wide input data queue that, as mentioned earlier, interface it

to the switch lattice emulator. Eight of these bits are the data to or

received from the Switch, while the other three specify the 1/O direction.

Since the microprocessor data bus is only eight bits wide, three of the

microprocessor parallel I/0 port lines serve to extend the data path

width to eleven bits. Other I/0 port lines serve as control signals to the

latch and queue.

. 011 -
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The input queue acts as a buffer between the Switch hardware, which

can operate at a burst data rate of up to 8 MHz, and the relatively slower

PE microprocessor. Since all eight logical input ports to the PE are

implemented as one physical input port, the use of a buffer queue is

essential. The buffer used consists of three bipolar FIFOs, four bits wide

by sixteen deep, which produces a single sixteen deep queue. Assuming

that the PEs transmit 32 bit words of data, the resulting queue is capable

of holding up to four words. This implies that sufficient buffering is

present to allow the emulation of CHiP machine programs wherein up to

four PEs write to a single PE in a single CHiP machine cycle.

3.3. Switch Emulator Structure Detail

The Switch is implemented in Schottky TTL hardware to permit a

very fast clock rate to be used. Figure 5 presents the block diagram of

the polling circuitry, mapping table and Switch controller.

A six bit polling counter is used to cycle the input address bus

through the addresses of all 64 PEs. When a PE is addressed, it responds

by putting the status of its data present flag on the data present bus line,

and the contents of its output latch on the data bus. When the hardware

detects a latch which contains data, it sends a strobe pulse on a control

line on the bus that clears the data present flag of the currently

addressed PE, and latches the data on the bus. Using the PE number

from the polling counter concatenated with the direction number sup-

plied by the PE, the hardware looks up the mapping table RAM for the

destination PE number and direction number.

The destination PE number is latched on the output address bus, and

the data from the source PE and the destination port address are latched

on the output data bus. Then a strobe pulse is sent on an output control

pA
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line. This causes the contents of the data bus to be entered in the queue

IJ of the selected PE.

The entire operation is pipelied to allow the polling of the next input

data latch to take place while the data from the current PE is routed to

its destination. Notice that this scheme was designed only to emulate a

switch lattice for a limited number of PEs. It cannot replace a true

switch lattice for an arbitrarily large number of PEs because of the

inherent serial bottleneck in sequential polling.

An 8031 microcomputer with 4096 bytes of program EPROM and 2048

bytes of scratch pad RAM serves as the controller of the switch. It can

stop the clock on the polling hardware and read or write to the mapping

table RAM. By means of three control lines, it can spzeify which of the

eight different switch settings is active at a given instant of time. A serial

line allows the 8031 to communicate with the host system.

The mapping table resides in a 4096 by 10-bit word RAM. For eachf configuration setting, each PE requires eight words, one for the destina-

tion PE number and port number of its eight output ports. Thus a total of

512 words are needed per switch setting, giving room for eight different

configurations.

3.4. Physical Characteristics

Excluding power supplies, Pringle occupies three 10.5 inch high cages

on a standard 19 inch wide rack. Wire-wrap boards are used, 9.6 by 7.8

inches in size, to make hardware modification easy.

There are sixteen PE boards, each containing a cluster of four PEs,

and eight Switch boards, each containing the data latches and queues for

eight PEs. In addition there is a Switch controller board containing the

I * 
* . 1
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,* polling hardware and control microprocessor for the Switch, and a bus

interface board which allows the 8086 central controller to communicate

with all the PEs.

Each PE uses 22 ICs; the entire machine, including the Switch, con-

tains 1947 ICs.

4. Comparison of the Pringle and the CHiP Computer

How does the Pringle compare to a CHiP machine? Evidently the 64

Pringle PEs with their 2K RAMs and floating point chips are reasonable,

albeit modest, approximations of CHiP PEs. But the Switch bears little

relationship to the switch lattice that it is supposed to emulate. This

difference warrants further discussion.

Perhaps the most crucial characteristic of a CHiP Computer's switch

lattice is the corridor utidth, the number of switches separating two adja-

cent PEs. (Figure 1 shows two lattices with corridors of width one and

two, respectively.) Wide corridors provide greater data routing capability

for complex topologies, and although any topology can be embedded into

any lattice, those with narrow corridors may underutilize the PEs as a

consequence [1,2]. Wide corridors are convenient. On the cost side of

the ledger, wide corridors require many switches and data paths, and a

reduced proportion of silicon is devoted to processor and memory capa-

city. Moreover, there is an increased pin requirement per package with

wide corridors, and a (minor) increase in transmission delay for neigh-

borhood communication. One central reason for building the Pringle is to

determine the best choice for corridor width.

Like all architectural features, the appropriate corridor width is

determined by the needs of typical algorithms. Our early algorithmic

-' IlF M 14
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experience indicates that a corridor width of perhaps two will suffice for

most situations, but much more experience is needed. Any particular

choice for the Pringle would have been too inflexible to give this data.

The key to the Pringle Switch's ability to "implement" a variety of

* lattices rests in the fact that regardless of corridor width, the lattice gen-

erally* implements point-to-point communication paths. Thus, a lattice

of any corridor width, once reduced to a set of point-to--point communi-

cation paths, can be "implemented" by down loading the source-target

pairs into the Switch's mapping table.

The routing constraints, imposed on the programmer by a lattice

with a particular corridor width, are enforced by the Poker Parallel Pro-

gramming Environment [4], the Pringle's front end. There the program-

mer specifies the lattice he wishes to use, programs the interconnection

structure graphically, and "compiles" the result into source-target pairs.

In Poker it is impossible to violate the limitations of the selected corridor

width, so the distilled communication description received by he Pringle

is a fair rendering of the routing capability of that lattice. As a result the

Pringle looks to the programmer like a CHiP Computer with the lattice of

his choice.

*A CHiP switch can fan-out, i.e., broadcast, but this feature can be d ilized by
other means and has been of only limited utility so far. The Switch cannot broad-
cast.

....
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